Effects of Electroacupuncture on the Daily Rhythmicity of Intestinal Movement and Circadian Rhythmicity of Colonic Per2 Expression in Rats with Spinal Cord Injury

نویسندگان

  • Jie Cheng
  • Xueqiang Wang
  • Jiabao Guo
  • Yujie Yang
  • Wenyi Zhang
  • Bin Xie
  • Zhaojin Zhu
  • Yuemei Lu
  • Yi Zhu
چکیده

Background. Spinal cord injury (SCI) leads to bowel dysfunction. Electroacupuncture (EA) may improve bowel function. Objective. To assess EA on daily rhythmicity of intestinal movement and circadian rhythmicity of colonic Per2 expression in rats with SCI. Methods. Rats were randomized to the sham, SCI, and SCI+EA groups. EA was performed at bilateral Zusanli point (ST36) during daytime (11:00-11:30) for 14 days following SCI. Intestinal transit and daily rhythmicity of intestinal movement were assessed. Circadian rhythmicity of colonic Per2 expression was assessed by real-time RT-PCR. Results. EA shortened the stool efflux time and increased the dry fecal weight within 24 h in SCI rats. Daily rhythmicity of intestinal movements was unaffected by SCI. The expression of colonic Per2 peaked at 20:00 and the nadir was observed at 8:00 in the SCI and sham groups. In the SCI+EA group, colonic Per2 expression peaked at 12:00 and 20:00, and the nadir was observed at 8:00. Conclusion. SCI did not change the circadian rhythmicity of colonic Per2 expression in rats, and daily intestinal movement rhythmicity was retained. EA changed the daily rhythmicity of intestinal movement and the circadian rhythmicity of colonic Per2 expression in rats with SCI, increasing Per2 expression shortly after EA treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light.

The master circadian clock located in the suprachiasmatic nuclei (SCN) is dominantly entrained by external light/dark cycle to run with a period of a solar day, that is, 24 h, and synchronizes various peripheral clocks located in the body's cells and tissues accordingly. A daily restricted normocaloric feeding regime synchronizes the peripheral clocks but has no effect on SCN rhythmicity. The a...

متن کامل

Assessment of Circadian Rhythmicity of Respiratory Determinants Related to Diurnal Activities of Children and Adolescents: A Case Study in the City of Isfahan

Background: Diurnal sequences of activities conducted at several locations visited by individuals have an impact on population exposure to air pollution. However, data on individual's movement with a fine time resolution is rare. Methods: In the current study, 399 children and adolescents (aged 11–18 years) from Isfahan city were asked to recall their 24-hour diary during winter and spring 2014...

متن کامل

Effects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science

Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...

متن کامل

Expression of Period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker.

The mammalian circadian clock lying in the suprachiasmatic nucleus (SCN) controls daily rhythms and synchronizes the organism to its environment. In all organisms studied, circadian timekeeping is cell-autonomous, and rhythmicity is thought to be generated by a feedback loop involving clock proteins that inhibit transcription of their own genes. In the present study, we examined how these cellu...

متن کامل

Absence of detectable melatonin and preservation of cortisol and thyrotropin rhythms in tetraplegia.

The human circadian timing system regulates the temporal organization of several endocrine functions, including the production of melatonin (via a neural pathway that includes the spinal cord), TSH, and cortisol. In traumatic spinal cord injury, afferent and efferent circuits that influence the basal production of these hormones may be disrupted. We studied five subjects with chronic spinal cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016